Physics at Hadron Colliders

Lecture II

Beate Heinemann

University of California, Berkeley and Lawrence Berkeley National Laboratory

CERN, Summer Student Lectures, 2009

Outline

- Lecture I: Introduction
 - Outstanding problems in particle physics
 - and the role of hadron colliders
 - Current and near future colliders: Tevatron and LHC
 - Hadron-hadron collisions
- Lecture II: Standard Model Measurements
 - Standard Model Cross Section Measurements as Tests of QCD
 - Precision measurements in electroweak sector
- Lecture III: Searches for the Higgs Boson
 - Standard Model Higgs Boson
 - Higgs Bosons beyond the Standard Model
- Lecture IV: Searches for New Physics
 - Supersymmetry
 - High Mass Resonances (Extra Dimensions etc.)

Standard Model Cross Section Measurements as test of QCD

- Jets
- W and Z bosons
- Top Quark Production

What is a Cross Section?

- Differential cross section: dσ/dΩ:
 - Probability of a scattered particle in a given quantum state per solid angle $\text{d}\Omega$
 - E.g. Rutherford scattering experiment
- Other differential cross sections: dσ/dE_T(jet)
 - Probability of a jet with given E_T
- Integrated cross section
 - Integral: $\sigma = \int d\sigma/d\Omega \ d\Omega$

$$\sigma = (N_{obs} - N_{bg})/(\epsilon L)$$

Luminosity Measurement

 $\sigma_{{\scriptscriptstyle LM}}$

$$R_{pp} = \mu_{pp} \cdot f_{BC} = \sigma_{inel} \cdot \varepsilon_{pp} \cdot \delta(L) \cdot L$$

 L - luminosity
 f_{bc} - Bunch Crossing rate
 μ_{a} - # of pp /BC

 σ_{inel} - inelastic x-set σ_{pp} - acceptance for σ_{lm} - detector not σ_{lm}

■ Measure events with 0 \(\frac{\frac{1}{2}}{2} \) interactions

- Related to R_{pp}
- Normalize to measured inelastic pp cross section
 - Tevatron: 60.7+/-2.4 mb
- LHC: 70-120 mb

 σ_{inel} – inelastic x-section

 ε_{pp} - acceptance for a single pp

Jet Cross Sections

Inclusive jets: processes qq, qg, gg

- Highest E_T probes shortest distances
 - Tevatron: r_q<10⁻¹⁸ m
 - LHC: r_q<10⁻¹⁹ m (?)
 - Could e.g. reveal substructure of quarks
- Tests perturbative QCD at highest energies

Jet Cross Section History

Run I (1996):

- Excess at high E_T
- Could be signal for quark substructure?!?

Jet Cross Section History

Since Run I:

- Revision of parton density functions
 - Gluon is uncertain at high x
 - It including these data describes data well

Jet Cross Sections in Run II

- Excellent agreement with QCD calculation over 8 orders of magnitude!
- No excess any more at high E_T
 - Large pdf uncertainties will be constrained by these data

High Mass Dijet Event: M=1.4 TeV

CDF Run II Preliminary

Jet Et1 = 666 GeV (corr) 583 GeV (raw) eta1 = 0.31 (detector) 0.43 (corr z)

Jet Et2 = 633 GeV (corr) 546 GeV (raw) eta2 = -0.30 (detector) -0.19 (corr z)

Run 152507 Event 1222318

DiJet Mass = 1364 GeV (corr)

z vertex = -25 cm

Jets at the LHC

- Much higher rates than at the Tevatron
 - Reach ~3 TeV already with 100 pb⁻¹ of LHC data

Jet Cross Section

W and Z Bosons

- Focus on leptonic decays:
 - Hadronic decays ~impossible due to enormous QCD dijet background

- Z:
 - Two leptons p_T>20 GeV
 - Electron, muon, tau
- W:
 - One lepton p_T>20 GeV
 - Large imbalance in transverse momentum
 - Missing E_T>20 GeV
 - Signature of undetected particle (neutrino)
- Excellent calibration signal for many purposes:
 - Electron energy scale
 - Track momentum scale
 - Lepton ID and trigger efficiencies
 - Missing E_⊤ resolution
 - Luminosity ...

Lepton Identification

• Electrons:

- compact electromagnetic cluster in calorimeter
- Matched to track

Muons:

- Track in the muon chambers
- Matched to track

- Narrow jet
- Matched to one or three tracks

- Imbalance in transverse momentum
- Inferred from total transverse energy measured in detector
- More on this in Lecture 4

Electron and Muon Identification

Desire:

- High efficiency for isolated electrons
- Low misidentification of jets

Performance:

- Efficiency:
 - 60-100% depending on |η|
 - Measured using Z's

Electrons and Jets

- Jets can look like electrons, e.g.:
 - photon conversions from π^0 's: ~13% of photons convert (in CDF)
 - early showering charged pions
- And there are lots of jets!!!

Jets faking Electrons

- Jets can pass electron ID cuts,
 - Mostly due to
 - early showering charged pions
 - Conversions: $\pi^0 \rightarrow \gamma \gamma \rightarrow ee + X$
 - Semileptonic b-decays
 - Difficult to model in MC
 - Hard fragmentation
 - Detailed simulation of calorimeter and tracking volume
- Measured in inclusive jet data at various E_T thresholds
 - Prompt electron content negligible:
 - N_{jet}~10 billion at 50 GeV!
 - Fake rate per jet:
 - CDF, tight cuts: 1/10000
 - ATLAS, tight cuts: 1/80000
 - Typical uncertainties 50%

Jets faking "loose" electrons

W's and Z's

- Z mass reconstruction
 - Invariant mass of two leptons

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

- Sets electron energy scale by comparison to LEP measured value
- W mass reconstruction
 - Do not know neutrino p_Z
 - No full mass resonstruction possible
 - Transverse mass:

$$m_T = \sqrt{|p_T^{\ell}|^2 + |p_T^{\nu}|^2 - (\vec{p}_T^{\ell} + \vec{p}_T^{\nu})^2}$$

Di-Electron Invariant Mass Spectrum

Tevatron W and Z Cross Section Results

Uncertainties:

Experimental: 2%

Theortical: 2%

Luminosity: 6%

- Can we use these processes to normalize luminosity?
 - Is theory reliable enough?

More Differential W/Z Measurements

LHC signals of W's and Z's with 50 pb⁻¹

- 50 pb⁻¹ yield clean signals of W's and Z's
- Experimental precision
 - ~5% for 50 pb⁻¹ ⊕ ~10% (luminosity)
 - ~2.5% for 1 fb⁻¹ ⊕ ~10% (luminosity)

Top Quark Production and Decay

At Tevatron, mainly produced in pairs via the strong interaction

Decay via the electroweak interactions
 Br(t →Wb) ~ 100%
 Final state is characterized by the decay of the W boson

Different sensitivity and challenges in each channel

SM: $t\bar{t}$ pair production, Br(t \rightarrow bW)=100%, Br(W \rightarrow lv)=1/9=11%

dilepton (4/81) 2 leptons + 2 jets + missing E_T l+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets (here: $l=e,\mu$)

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


missing ET

SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


SM: $t\bar{t}$ pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


more jets

Top Event Categories

Finding the Top at Tevatron and LHC without b-quak identification

- Tevatron:
 - Top is overwhelmed by backgrounds:
 - Even for 4 jets the top fraction is only 40%
 - Use b-jets to purify sample
- LHC
 - Signal clear even without b-tagging: S/B>1.5

Finding the b-jets

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: d=cτ
 - Lifetime τ =1.5 ps⁻¹
 - d=cτ = 460 μm

- - resolution ~ 30 μm
 - Search tracks inconsistent with primary vertex (large d₀):
 - Candidates for secondary vertex
 - See whether three or two of those intersect at one point
 - Require displacement of secondary from primary vertex
 - Form L_{xy}: transverse decay distance projected onto jet axis:
 - L_{xy}>0: b-tag along the jet direction => real b-tag or mistag
 - L_{xy}<0: b-tag opposite to jet direction => mistag!
 - Significance: e.g. δL_{xy} / L_{xy} >7 (i.e. 7σ significant displacement)
- More sophisticated techniques exist

displaced tracks

Secondary

Characterise the B-tagger: Efficiency

- Efficiency of tagging a true b-jet
 - Use Data sample enriched in b-jets
 - Select jets with electron or muons
 - From semi-leptonic b-decay
 - Measure efficiency in data and MC

electror

away

Achieve efficiency of about 40-50% at Tevatron (can use top events directly to measure efficiency at LHC)

Characterise the B-tagger: Mistag rate

- Mistag Rate measurement:
 - Probability of light quarks to be misidentified
 - Use "negative" tags: L_{xy}<0</p>
 - Can only arise due to misreconstruction
 - Mistag rate for E_T=50 GeV:
 - Tight: 0.5% (ε=43%)
 - Loose: 2% (ε=50%)
 - Depending on physics analyses:
 - Choose "tight" or "loose" tagging algorithm

The Top Signal: Lepton + Jets

Select:

- 1 electron or muon
- Large missing E_T
- 1 or 2 b-tagged jets

Data and Monte Carlo Comparison

The Top Signal: Dilepton

- Select:
 - 2 leptons: ee, eμ, μμ
 - Large missing E_T
 - 2 jets (with or w/o b-tag)

 $\sigma = 6.2 \pm 0.9 \text{ (stat)} \pm 0.9 \text{ (sys) pb}$

The Top Cross Section

Tevatron

- Measured using many different techniques
- Good agreement
 - between all measurements
 - between data and theory
- Precision: ~13%

LHC:

- Cross section ~100 times larger
- Measurement will be one of the first milestones (already with 10 pb⁻¹)
 - Test prediction
 - demonstrate good understanding of detector
- Expected precision
 - ~4% with 100 pb⁻¹

Precision Measurement of Electroweak Sector of the Standard Model

- W boson mass
- Top quark mass
- Implications for the Higgs boson

The W boson, the top quark and the Higgs boson

- Top quark is the heaviest known fundamental particle
 - Today: m_{top}=172.6+-1.4 GeV
 - Run 1: m_{top} =178+-4.3 GeV/c²
 - Is this large mass telling us something about electroweak symmetry breaking?
 - Top yukawa coupling:
 - <H>/($\sqrt{2}$ mtop) = 1.008+-0.008
- Masses related through radiative corrections:
 - $m_W \sim M_{top}^2$
 - $m_W \sim ln(m_H)$
- If there are new particles the relation might change:
 - Precision measurement of top quark and W boson mass can reveal new physics

W Boson mass

- Real precision measurement:
 - LEP: M_w=80.367±0.033 GeV/c²
 - Precision: 0.04%
 - = => Very challenging!
- Main measurement ingredients:
 - Lepton p_T
 - Hadronic recoil parallel to lepton: u_{||}

- but statistically limited:
 - About a factor 10 less Z's than W's
 - Most systematic uncertainties are related to size of Z sample
 - Will scale with $1/\sqrt{N_Z}$ (=1/ \sqrt{L})

$$m_T = \sqrt{2p_T^l p_T (1 - \cos \Delta \phi)},$$

$$p_T \approx |p_T + u_{||}|$$

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

Lepton Momentum Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Systematic Uncertainties

m_T Fit Uncertainties				=
Source	$W \to \mu \nu$	$W\to e\nu$	Correlatio	n
Tracker Momentum Scale	17	17	100%	
Calorimeter Energy Scale	0	25	0%	
Lepton Resolution	3	9	0%	
Lepton Efficiency	1	3	0%	Limited by data
Lepton Tower Removal	5	8	100%	statistics
Recoil Scale	9	9	100%	
Recoil Resolution	7	7	100%	
Backgrounds	9	8	0%	T. 4 11 14
PDFs	11	11	100%	Limited by data
W Boson p_T	3	3	100%	and theoretical
Photon Radiation	12	11	100%	understanding
Statistical	54	48	0%	
Total	60	62	-	_

TABLE IX: Uncertainties in units of MeV on the transverse mass fit for m_W in the $W \to \mu \nu$ and $W \to e \nu$ samples.

- Overall uncertainty 60 MeV for both analyses
 - Careful treatment of correlations between them
- Dominated by stat. error (50 MeV) vs syst. (33 MeV)

W Boson Mass

New world average:

 $M_w = 80399 \pm 23 \text{ MeV}$

Ultimate precision:

Tevatron: 15-20 MeV

LHC: unclear (5 MeV?)

Top Mass Measurement: $tt \rightarrow (blv) (bqq)$

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

- Inputs:
 - Jet 4-vectors
 - Lepton 4-vector
 - Remaining transverse energy p_{T.UE}:

•
$$p_{T,v} = -(p_{T,l} + p_{T,UE} + \sum p_{T,iet})$$

- Constraints:
 - M(Iv)=M_W
 - $M(q\overline{q})=M_W$
 - M(t)=M(t)
- Unknown:
 - Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_t^{reco}
 - Leave jet energy scale ("JES") as free parameter

Selecting correct combination 20-50% of the time

Example Results on m_{top}

CDF Run II Preliminary 3.2 fb⁻¹

$$m_{top} = 173.7 \pm 0.8 \text{ (stat)} \pm 1.6 \text{ (syst)} \text{ GeV}$$

 $\pm 1.0\%$

 $\pm 0.9\%$

Combining M_{top} Results

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- Uncertainty: 1.3 GeV
 - Dominated by syst. uncertainties
- Precision so high that theorists wonder about what it's exact definition is!

Implications for the Higgs Boson

LEPEWWG 03/09

Standard Model still works!

$$m_{\rm H} = 90^{+30} - 27 \text{ GeV}$$

m_H<163 GeV @95%CL

45

Conclusions

- Perturbative QCD describes hadron collider data successfully:
 - Jet cross sections: $\Delta \sigma / \sigma \approx 20-100\%$
 - W/Z cross section: Δσ/σ ≈ 6%
 - Top cross section: $\Delta \sigma / \sigma \approx 15\%$
- High Precision measurements
 - W boson mass: $\Delta M_W/M_W = 0.028\%$
 - top quark mass: $\Delta m_{top}/m_{top}=0.75\%$
- Standard Model still works!
 - Higgs boson constrained
 - 114<m_H<160 GeV/c² at 95% C.L. (combining direct and indirect results)
 - Direct Searches: see next lecture!